

Talbot effect in X-Ray Waveguides

I. Bukreeva^{1,2}, A. Cedola¹, A. Sorrentino¹, F. Scarinci¹, M. Ilie¹, M. Fratini¹, and S. Lagomarsino¹

¹Istituto di Fotonica e Nanotecnologie – CNR, Roma – Italy ²Russian Academy of Science, P. N. Lebedev Physics Institute, Moscow, Russia

Poland,Krakow 2010

COST Action MP0601

Waveguides

Resonant beam coupling

Front-coupling

Advantages of front-coupling WG

- Core layer: vacuum
- FC WG as optics for X-ray tubes

Computer simulation

Source

- incoherent radiation
- coherent radiation

Optics

Waveguide with frontcoupling

Method

- Numerical solution of wave equation
- Analytical solution of wave equation

Talbot effect in periodical structures

Talbot effect

From Wikipedia, the free encyclopedia

The Talbot Effect

Lord Rayleigh showed that the Talbot Effect was a natural consequence of Fresnel Diffraction and that the Talbot Length can be found by the following formula^[2]:

$$z_T = \frac{2a^2}{\lambda}$$

where α is the period of the diffraction grating and λ is the wavelength of the light incident on the grating.

Talbot effect. Phase gratings (phase π) vs plane FC WGs

In general self image fenomenon occur in wave field composed of discrete modes

Phase grating (π)
Period D=2d=200 nm

Waveguide with vacuum gap d=100 nm, $\lambda=0.154$ nm, $R_{fr}=1$

The interference pattern has a maximum modulation at distances

 $X_m = mD^2/(8\lambda)$ – fractional Talbot distance, for WG D=2d

Talbot effect. Phase gratings (phase π) vs plane FC WGs

Diffraction pattern has a maximum modulation at fractional Talbot distances $X_T = mD^2/8\lambda$

Au, $\lambda = 0.154 \text{ nm d} = 100 \text{ nm}$

- 1) Phase grating. Period D, 0.5 duty cycle and π phase shift. Diffraction pattern has half the period of the grating d=D/2
- 2) FC waveguide with vacuum gap d=D/2.

The width of the energy distribution at odd fractional Talbot distances $X_T = mD_{\rm eff}^2/8\lambda$ is one half that at even distances

 $d_{eff} \approx d+2\zeta$, where $\zeta=1/k(\theta c-\theta_m)^{1/2}$ is the penetration depth for m-th mode

Talbot effect. Front coupling WGs

Diffraction pattern in the far field zone

The width of the energy distribution in far field zone for even fractional Talbot distances is one half that for odd distances

Montgomery self-imaging

Talbot self-imaging (sufficient condition)

$$U_{\theta}(y) = U_{\theta}(y + P_{y}) \Rightarrow U_{x}(y) = U_{x+P_{x}}(y)$$

Wave field with a lateral periodicity P_y is periodic in longitudinal direction with period

$$P_x = \frac{2P_y^2}{\lambda}$$

Montgomery self-imaging (necessary condition)

the paraxial case

Wave field has a longitudinal periodicity Px in direction x if the lateral components of the k vector obeys the condition

$$U_x(y) = U_{x+Px}(y) \Rightarrow U_0(y) = \sum_m A_m \exp(ik_{y,m}y)$$

$$k_{y,m}^2 = (2\pi)^2 \left[\left(\frac{1}{\lambda} \right)^2 - \left(\frac{m}{P_x} \right)^2 \right]$$

Montgomery self-imaging

WG with the longitudinal periodicity

1. Wave field with lateral periodicity

$$k_{T,x}^{m} = \pm 2\pi \sqrt{\left(\frac{1}{\lambda}\right)^{2} - \left(\frac{m}{P_{y}}\right)} \approx 2\pi \left(\frac{1}{\lambda} - \frac{m^{2}}{P_{y}}\right), \quad m = 0, \pm 1, \pm 2, \dots$$

 $k_{x}^{2} + k_{y}^{2} = \left(\frac{2\pi}{\lambda}\right)^{2}$ $k_{y} = 2\pi m/P_{y}$ $k_{x} = 2\pi m/P_{x}$ $k_{x} = 2\pi m/P_{x}$ $k_{x} = 2\pi m/P_{x}$

2. The longitudinally periodic wave field

$$k_{M,y}^{n} = \pm 2\pi \sqrt{\left(\frac{1}{\lambda}\right)^{2} - \left(\frac{n}{P_{x}}\right)^{2}}, \quad n = \pm 1, \pm 2, \dots$$

3. Lateral P_y and longitudinal period P_x are varied independently

$$\left(k_{y}^{M}\right)^{2} + \left(k_{x}^{T}\right)^{2} = \left(\frac{2\pi}{\lambda}\right)^{2} \qquad \qquad m^{2}\left(\frac{\lambda}{2d}\right)^{2} + n^{2}\left(\frac{\lambda}{P_{x}}\right)^{2} = 1$$

Ewald sphere

Jürgen Jahns, and Adolf W. Lohmann
Appl. Opt., Vol. 48, No. 18 / 20 June 2009

Paraxial domain

sial domain $m < m_{\text{max}}, n \sim N \approx p_x / \lambda$

Multimodal WGs with longitudinal periodicity

Multimodal WG, Au, λ=0.1nm,d=100 nm

The energy distribution at exit apertue of the WG (red line) and WG with grating (blue line)

WG with longitudinal periodicity. Period $P_L = d_{eff}^{\ 2}/\lambda$, duty 2/3

The energy distribution at far field zone. WG (red line) and WG with grating (blue line)

Multimodal WGs with longitudinal periodicity. Incoherent source.

Propagation of the incoherent wave in the WG

WG with grating. Period P=deff $^2/\lambda$ =119.9 μm (39.97 μm vacuum, 79.94 μm Cr) d_{eff} =109.5 nm

Conclusion

- 1. The field in multimode x-ray waveguides with longitudinal periodicity are studied.
- 2. Modal structure of WGs depends on the ratio of the lateral and longitudinal periods
- 3. Montgomery condition for the wave vector includes the wavelength of the x-ray radiation and therefore x-ray waveguides with longitudinal periodicity can influence on temporal frequencies of the field

Poland,Krakow 2010

COST Action MP0601

